for the mass spectra; to Professor Raymond A. Young, Department of Forestry, University of Wisconsin, Madison, for continuing support; and to the New Zealand Research Advisory Council for partial funding of this research.

Registry No. $\left(R^{*}, R^{*}\right)$-1a, 82247-15-2; $\left(R^{*}, S^{*}\right)$-1a, 86956-00-5; (R^{*}, R^{*})-1b, 86956-01-6; ($\left.R^{*}, S\right)^{*}$-1b, 86956-02-7; (R^{*}, R^{*})-1c,

82247-06-1; (R^{*}, S^{*})-1c, 86956-03-8; 1c 10-trimethylsilyloxy derivative, 86956-04-9; (R^{*}, S^{*})-1d, 86968-53-8; (R^{*}, R^{*})-1d, 86968-54-9; (R^{*}, R^{*})-3a, 36483-10-0; (R^{*}, S^{*})-3a, 7107-92-8; (R^{*}, R^{*})-3b, 7595-29-1; (R^{*}, S^{*})-3b, 7572-98-7; $\left(R^{*}, R^{*}\right)$-5a, 86956-05-0; (R^{*},-$\left.S^{*}\right)$-5a, 86956-06-1; (R^{*}, R^{*})-5b, 86956-07-2; ($\left.R^{*}, S^{*}\right)$-5b, 86956-08-3; 6, 28871-54-7; 7, 28871-52-5; trans-9, 86956-09-4; trans-10, 86956-10-7; cis-10, 86956-11-8; lignin, 9005-53-2.

Reactions of Azines. 6. Thermal Rearrangements of 1,1-Disubstituted-2,3-diaza-4-methyl-1,3,5,6-heptatetraene to 4,9-Dihydropyrazolo[1,5-b] isoquinolines and Side Products

Edward E. Schweizer,* Weiling Hsueh, Arnold L. Rheingold, ${ }^{\dagger}$ and Rebecca L. Durney ${ }^{\dagger}$

Department of Chemistry, University of Delaware, Newark, Delaware 19711
Received February 16, 1983

Abstract

The preparation of 4,9-dihydropyrazolo[1,5-b]isoquinolines ($16 \mathrm{or} /$ and 18) was accomplished by allowing the corresponding ketenes to react with (2-((diphenylmethylene)hydrazono)propylidene)triphenylphosphorane (10) and (2-((methylphenylmethylene)hydrazono) propylidene)triphenylphosphorane (11). It was determined that the predicted stability of the carbocation of the intermediate azomethine imine 15 , or 17 , on the 1 - and 5 -positions on the pyrazole backbone allowed one to predict the major product 16 or 18 of the reaction. An X-ray analysis of the thermodynamically more stable product of the reaction of phenylketene with ylide 10 showed it to be in the trans geometry, 18d-1, with the three central rings essentially planar (170.7° angle) about the $\mathrm{C}-4 / \mathrm{C}-9$ axis.

The usefulness of di- α, β-unsaturated azines as synthons for a variety of N -substituted pyrazoles ${ }^{1 a-e}$ as well as tetrahydroindazoles, ${ }^{1 \mathrm{~b}}$ pyrazolopyrans, ${ }^{1 \mathrm{~b}}$ and cyclopentapyrazoles ${ }^{1 \mathrm{~b}}$ has been demonstrated. It has also been shown that keto allenyl azines, 1 , when $R=H\left(R^{1}=H\right.$, vinyl, $\left.P h\right)$, give exclusively pyrazolo[5,1-c]-1,4-oxazines, 2 , whereas when the allenyl substituents are not hydrogen and one of the R's is phenyl, the major products are pyrazolooxazines, 2 , and 4,9-dihydropyrazolo[1,5-b]isoquinolines, 3, and at times $4 .{ }^{2}$

In an attempt to develop a method for the preparation of 4,9 -dihydropyrazolo [1,5-b]isoquinolines without the inclusion of the pyrazolo[5,1-c]-1,4-oxazine side products, we examined the reactions of allenyl-substituted azines without a carbonyl or π system (other than the aromatic

[^0]moiety) at the other end of the azine from the allenyl group.

Results and Discussion

The hydrazones of benzophenone and acetophenone were allowed to react with propargyltriphenylphosphonium bromide (7) to give 2-((diphenylmethylene)hydrazono)propyltriphenylphosphonium bromide (8) and 2-((methylphenylmethylene) hydrazono) propyltriphenylphosphonium bromide (9). The ${ }^{31} \mathrm{P}$ NMR spectrum

$$
\begin{gather*}
\mathrm{PhRC}=\mathrm{NNH}_{2}+\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{P}^{+} \mathrm{Ph}_{3} \mathrm{Br}^{-} \rightarrow \\
\mathbf{5}, \mathrm{R}=\mathrm{Ph} \\
\mathbf{6}, \mathrm{R}=\mathrm{CH}_{3} \\
\mathrm{PhRC}=\mathrm{NNH}\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{C}=\mathrm{CHPP}^{+} \mathrm{Ph}_{3} \mathrm{Br}^{-}+ \\
8 \mathbf{a}, \mathrm{R}=\mathrm{Ph} \\
9 \mathrm{a}, \mathrm{R}=\mathrm{CH}_{3} \\
\mathrm{PhRC}=\mathrm{NN}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{P}^{+} \mathrm{Ph}_{3} \mathrm{Br}^{-} \rightarrow \\
8 \mathbf{b}, \mathrm{R}=\mathrm{Ph}^{2} \\
\mathbf{9 b}, \mathrm{R}=\mathrm{CH}_{3} \\
\mathrm{PhRC}=\mathrm{NN}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=\mathrm{PPh}_{3} \tag{2}\\
10, \mathrm{R}=\mathrm{Ph}^{2} \\
11, \mathrm{R}=\mathrm{CH}_{3}
\end{gather*}
$$

clearly showed that the predominant form of both 8 and 9 is the N-substituted vinylphosphonium species 8 a and $9 \mathbf{a}$. The ratios found were $\mathbf{8 a} / \mathbf{8 b}=2 / 1$ and $\mathbf{9 a} / \mathbf{9 b}=3 / 1$. The isomers of 8 a showed ${ }^{31} \mathrm{P}$ NMR in the $15.8-16.7 \mathrm{ppm}$ range and 9 a at $16.8-17.8 \mathrm{ppm}$, whereas the $\mathbf{8 b}$ (azine methylphosphonium) isomers showed ${ }^{31} \mathrm{P}$ NMR at 22.1
(1) (a) Schweizer, E. E.; Hirwe, S. N J. Org. Chem. 1982, 47, 1652. (b) Albright, T. A.; Evans, S.; Kim, C. S.; Labaw, C. S.; Russiello, A. B.; Schweizer, E. E. Ibid 1977, 42, 3691. (c) Schweizer, E. E.; Kim, C. S.; Labaw, C. S.; Murray, W. P. J. Chem. Soc., Chem. Commun. 1973, 7. (d) Stern, R. L.; Krause, J. G. J. Heterocycl. Chem. 1968, 5, 263. (e) Stern, R. L.; Krause, J. G. J. Org. Chem. 1968, 33, 213.
(2) Schweizer, E. E.; Evans, S. J. Org. Chem. 1978 43, 4328.

ppm and $9 \mathbf{b}$ at $22.9-23.2 \mathrm{ppm}$. It has been shown previously that N -substituted vinylphosphonium salts absorb in the ${ }^{31} \mathrm{P}$ range $12.9-18.6 \mathrm{ppm}$, and imine methylphosphonium salts appear in the ${ }^{31} \mathrm{P}$ range 19.1-22.5 ppm. ${ }^{3}$ The proton NMR data (see Experimental Section) also support the presence of the structures proposed.
The phosphonium ylides 10 and 11 were obtained by allowing the corresponding salts 8 and 9 to react with potassium hydroxide in ethanol at $-15^{\circ} \mathrm{C}$.

The phosphonium ylides 10 and 11 when allowed to react with ketenes gave predominantly 4,9 -dihydro-pyrazolo[1,5-b]isoquinolines (16 or/and 18) (see Scheme I).

The "criss-cross" cycloaddition of the allenyl azines 13 would give the resonance-stabilized azomethine imine 15 $\leftrightarrow 14 \leftrightarrow 17$. The preference for the formation of the

18
17

$18 \mathrm{~b}, \mathrm{R}=\mathrm{R}^{1}=\mathrm{Ph} ; \mathrm{R}^{2}=\mathrm{CH}_{3}$
$18 \mathrm{c}, \mathrm{R}=\mathrm{Ph} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
18d, R $=R^{1}=P h ; R^{2}=H$
18e, $R=P h ; R^{1}=E t ; R^{2}=H$
$16 \mathrm{a}, \mathrm{R}=\mathrm{R}^{1}=\mathrm{Ph}$
$16 \mathrm{~b}, \mathrm{R}=\mathrm{Ph} ; \mathrm{R}^{1}=\mathrm{CH}_{3}$
$16 \mathrm{~h}, \mathrm{R}=\mathrm{CH}_{3} ; \mathrm{R}^{1}=\mathrm{Ph}$
16i, R $=\mathrm{R}^{1}=\mathrm{CH}_{3}$
$18 \mathrm{f}, \mathrm{R}=\mathrm{Ph} ; \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph} ; \mathrm{R}^{2}=\mathrm{H}$
$18 \mathrm{i}, \mathrm{R}=\mathrm{R}^{1}=\mathrm{CH}_{3} ; \mathrm{R}^{2}=\mathrm{Ph}$
pyrazoloisoquinoline 16 or 18 seems to lie in favor of 16 where $R^{1}=P h$ and $R^{2}=R$, i.e., where the groups attached to the 1 and 5 positions on the pyrazole backbone are identical. For instance, where $\mathrm{CR}^{1} \mathrm{R}^{2}$ and CRPh are both CPh_{2}, only 16 a is formed; similarly where $\mathrm{CR}^{1} R^{2}$ and CRPh are both $\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}$, the ratio of $\mathbf{1 6 i} / 18 \mathbf{i}$ is $74 / 26$.
Furthermore, if the groups $\mathrm{CR}^{1} \mathrm{R}^{2}$ and CRPh are not equal, the group that provides greater carbocation stabilization determines the predominance of species 16 or 18. Thus the following results were observed: (a) Where $\mathrm{CR}^{1} \mathrm{R}^{2}=\mathrm{CPh}_{2}$ and $\mathrm{CRPh}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}$, only 16 h was found. (b) Where $\mathrm{CR}^{1} \mathrm{R}^{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}$ and $\mathrm{CRPh}=\mathrm{CPh}_{2}$, $16 \mathrm{~b} / 18 \mathrm{~b}=40 / 60$. (c) Where $\mathrm{CR}^{1} \mathrm{R}^{2}=\mathrm{CHH}, \mathrm{CPhH}, \mathrm{C}-$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{H}$, or $\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{H}$ and CRPh is always CPh_{2},

[^1]

Scheme I

14
$13 \mathbf{a}, \mathrm{R}=\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph}$
13b, $R=R^{1}=\mathrm{Ph} ; \mathrm{R}^{2}=\mathrm{CH}_{3}$
$13 c, R=P h, R^{2}=R^{2}=H$
3d, $R=R^{1}=P h ; R^{2}=H$
$13 \mathrm{f}, \mathrm{R}=\mathrm{Ph} ; \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph} ; \mathrm{R}^{2}=\mathrm{H}$
$13 \mathrm{~g}, \mathrm{R}=\mathrm{Ph} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}_{3}$
13h, $R=\mathrm{CH}_{3} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph}$
$13 \mathrm{j}, \mathrm{R}=\mathrm{CH}_{3} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
only $18 \mathrm{c}, 18 \mathrm{~d}, 18 \mathrm{e}$, and 18 f were found, respectively.
Two isomers were isolated with structure 18d. On heating, one of the structures was shown to convert slowly into the other (25% conversion in $\mathbf{1 2 h}$). The most stable isomer was shown by X-ray (Figure 1) to be the trans isomer, $\mathbf{1 8 d} \mathbf{d}$. It is assumed that the less stable isomer is the cis isomer 18d-2. The X-ray data showed that the two halves of $18 \mathrm{~d}-1$, sighting along an axis defined by the C-4 eclipsing the C-9 carbon atom, are inclined to each other at an angle of 170.7°. This is in sharp contrast to an angle of approximately 145° reported for 9,10 -dihydroanthracene ${ }^{4 a}$ and the nonplanarity presumed for trans-9,10-disubstituted-9,10-dihydroanthracenes. ${ }^{4 b, c}$ The angle found along the C-4/C-9 axis in 18d-1 is closer to the planarity calculated for 1,4 -cyclohexadiene ${ }^{5 a}$ and 9,10 -dihydroanthracene. ${ }^{5 b}$
No pyrazoloisoquinolines (16 or 18) were found in the two cases studied. In the reaction of dimethylketene with 10 , which would lead to the allene 13 g , 1 -(diphenyl-methyl)-3-methyl-5-(2-propenyl)pyrazole (22) and the betaine 20 were observed. On heating the betaine 20 at $180^{\circ} \mathrm{C}$, the acetylenic azine 21 and the pyrazole 22 were observed. Extended heating of 21 (or 20) gave only 22, presumably via 13 g . The formation of acetylenes from unsaturated betaines is a well-documented reaction. ${ }^{6}$

[^2]

Figure 1. An ORTEP diagram of $18 \mathrm{~d}-1$ with 40% probability ellipsoids. The numbering scheme shown corresponds to that used in the text; a concordance accompanies the supplementary tables that relates the chemical and crystallographic numbering schemes. The angle between the best-fit planes obtained from $\mathrm{C}(4), \mathrm{C}(12)$, $\mathrm{C}(13), \mathrm{C}(9)$, and $\mathrm{C}(4), \mathrm{C}(11), \mathrm{N}(10), \mathrm{C}(9)$ is 9.3°.

A similar product is observed for the reaction of ketene with 11, via the azine 13 j , to give 1-(1-phenylethenyl)-3,5-dimethylpyrazole (23).

23
Several of the reaction series yielded products in addition to the expected isoquinolines. The phosphorane 10 , when allowed to react with benzylketene via allene $13 f$, gave the corresponding pyrazoloisoquinoline $\mathbf{1 8 f}$ and $2,3-$ diaza-4-methyl-1,1,8-triphenylocta-1,4-dien-6-yne (24f). A possible pathway is shown below in eq 6 .

$$
\begin{gather*}
\mathrm{Ph}_{2} \mathrm{C}=\mathrm{NN}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=\mathrm{C}=\mathrm{CHR}^{2} \rightarrow \\
13 \mathrm{f} \\
{\left[\mathrm{Ph}_{2} \mathrm{C}=\mathrm{NN}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CR}^{2}\right] \rightarrow} \\
\mathrm{Ph}_{2} \mathrm{C}=\mathrm{NNH}\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CHC} \equiv \mathrm{CR}^{2} \\
\mathbf{2 4 e , \mathrm { R } ^ { 2 } = \mathrm { Et }} \\
\mathbf{2 4 f}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Ph} \\
\mathbf{2 4 e} \xrightarrow{n-\mathrm{PrCOCl}} \mathrm{Ph}_{2} \mathrm{C}=\mathrm{NN}(n-\mathrm{PrCO})\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CHC} \equiv \mathrm{CR}^{2} \\
\mathbf{2 5 e}, \mathrm{R}^{2}=\mathrm{Et} \tag{6}
\end{gather*}
$$

Similarly the reaction of ethylketene with phosphorane 10 gave the pyrazoloisoquinoline 18 e as well as 2,3 -diaza-4-methyl-1,1-diphenylnona-1,4-dien-6-yne (24e) and the acylated product 25 e.

Thus it has been demonstrated that the 4,9-dihydro-pyrazolo[1,5-b]isoquinolines (16 and/or 18) may be produced in high yields, with relatively few side products, from the corresponding allenyl azines.

Experimental Section

General. Dry nitrogen was routinely used as the reaction atmosphere in all reactions. All glassware was baked at 110-120 ${ }^{\circ} \mathrm{C}$ for a minimum of 1 h before being used. Melting points were obtained with a Thomas-Hoover apparatus and are uncorrected. Eastman Chromagram (silica gel with a fluorescent indicator on polyethylene) precoated sheets (TLC) were employed in thin-layer chromatographic operations. Column chromatography was accomplished on $35 \times 350 \mathrm{~mm}$ silica gel column.

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR of approximately 10% solutions in CDCl_{3} were obtained on a Bruker Spectrospin Instrument, Model WM 250. Chemical shifts are reported in parts per million (δ scale) employing tetramethylsilane (phosphoric acid for ${ }^{31} \mathrm{P}$ NMR) as an internal standard. In reporting NMR data, the following abbreviations have been employed: coupling constant in Hertz (J), singlet (s), broad singlet (brs), doublet (d), doublet of doublets (dd), doublet of quartets (dq), triplet (t), quartet (q), quintet (p), and multiplet (m). The numbering system for the phosphonium salts and ylides is $\mathrm{Ph}(\mathrm{R}) \mathrm{C}^{1}-\mathrm{N}-\mathrm{N}-\mathrm{C}^{4}\left(\mathrm{CH}_{3}\right)-\mathrm{C}^{5}-\mathrm{P}$ and for the pyrazoloisoquinolines is as shown:

All compounds whose ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR are not listed in this Experimental Section may be found in Table 6S and 7S, respectively (available as supplementary material). The ranges of the ${ }^{1} \mathrm{H}$ parameters for the 4,9-dihydropyrazolo [1,5-b]isoquinolines 16 and 18 were as follows: $\mathrm{C}(2)-\mathrm{CH}_{3}, \mathrm{C}(3)-\mathrm{H}, \mathrm{C}(4)-\mathrm{H}, \mathrm{C}(9)-\mathrm{H}$, aromatic, $\mathrm{C}(4)-\mathrm{CH}_{3}$, and $\mathrm{C}(9)-\mathrm{CH}_{3}$ at $2.2-2.3,5.5-6.0,4.0-5.5$, $5.4-6.6,6.7-7.5,1.3-2.0$, and $2.3-2.5 \mathrm{ppm}$, respectively. The ranges of the ${ }^{13} \mathrm{C}$ parameters for the 4,9 -dihydropyrazolo[1,5 - b]isoquinolines 16 and 18 were as follows: $\mathrm{C}(2)-\mathrm{CH}_{3}, \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(4)$, $\mathrm{C}(9), \mathrm{C}(11), \mathrm{C}(4)-\mathrm{CH}_{3}$, and $\mathrm{C}(9)-\mathrm{CH}_{3}$ at 13.6-14.1, 147.9-149.3, 101.3-103.9, 27.7-44.6, 56.4-73.2, 141.9-148.0, 19.5-30.7, and $28.4-29.7$, respectively. The composition of inseparable reaction products was determined by an examination of the ${ }^{1} \mathrm{H}$ NMR of the crude products. Electron impact mass spectra were recorded using a Du Pont CEC 21-110 D instrument with a resolution of 3300. Elemental analyses were performed by Microanalysis Inc. of Wilmington, DE.

All solvents were used in anhydrous condition. Propargyltriphenylphosphonium bromide was prepared by the procedure of Eiter and Oediger. ${ }^{7} \quad \alpha$-Phenylpropionyl chloride was prepared from the acid employing thionyl chloride. ${ }^{8} \quad$ Diphenylacetyl chloride and β-phenylpropionyl chloride were purchased from Pfaltz and Bauer, Inc. Phenylacetyl chloride, isobutyryl chloride, and butyryl chloride were purchased from the Aldrich Chemical Co. All of these acyl chlorides were purified by distillation prior to use.

Preparation of 2-((Diphenylmethylene)hydrazono)propyltriphenylphosphonium Bromide (8). A slurry of 4.02 $\mathrm{g}(20.5 \mathrm{mmol})$ of benzophenone hydrazone ${ }^{9}(5)$ and $7.6 \mathrm{~g}(20 \mathrm{mmol})$ of propargyltriphenylphosphonium bromide (7) in 20 mL of methylene chloride was heated under reflux with stirring for 6 h. The yellowish clear solution was added dropwise into 200 mL of boiling benzene and then stirred at ambient temperature for 1.5 h as a pale yellow precipitate appeared slowly. After the yellow solid was filtered and reprecipitated from methylene chloride/ ethyl acetate, $10.5 \mathrm{~g}(91 \%)$ of a white analytically pure solid was obtained. TLC showed one spot (petroleum ether/ethanol 6/4), mp 222-223 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (for 8 a) $\delta 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CC}=\mathrm{CH}\right.$), 4.00 (d, $J_{\mathrm{PH}}=15.0,1 \mathrm{H}, \mathrm{CH}-\mathrm{P} \equiv$), 6.68-7.66 (m, $25 \mathrm{H}, \mathrm{Ar}$), 9.14 (br $\mathrm{s}, \mathrm{NH})$; (for 8 b) $2.39\left(\mathrm{~s}, 3 \mathrm{H},=\mathrm{CCH}_{3} \mathrm{CH}_{2}\right), 5.20\left(\mathrm{~d}, J_{\mathrm{PH}}=13.3\right.$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P} \equiv$), 6.68-7.66 (m, $25 \mathrm{H}, \mathrm{Ar}$); ${ }^{13} \mathrm{C}$ NMR (for 8 a) $\delta 23.0$ $\left(\mathrm{d}, J_{\mathrm{CCP}}=15.8, \mathrm{CH}_{3}\right), 61.5\left(\mathrm{~d}, J_{\mathrm{CP}}=110.3, \mathrm{CH}-\mathrm{P} \equiv\right), 119.3(\mathrm{~d}$, $\left.J_{\text {CP }}=88.6, \mathrm{P}-\mathrm{C}_{\text {ipso }}\right)$; (for 8b) $20.4\left(\mathrm{~d}, J_{\mathrm{CCP}}=7.9, \mathrm{CH}_{3}\right), 33.1(\mathrm{~d}$, $J_{\mathrm{CCP}}=57.1, \mathrm{CH}_{2} \mathrm{P}$), $122.8\left(\mathrm{~d}, J_{\mathrm{CP}}=88.7, \mathrm{P}-\mathrm{C}_{\text {ipso }}\right.$); ${ }^{31} \mathrm{P}$ NMR (for 8a) $\delta 15.79+16.73(67 \%)$; For $8 \mathbf{b} 22.06(33 \%)$.

Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{P}: \mathrm{C}, 70.58 ; \mathrm{H}, 5.39$. Found: C, 70.71; H, 5.24.

Preparation of 2-((Methylphenylmethylene)hydrazono) propyltriphenylphosphonium Bromide (9). Acetophenone hydrazone ${ }^{10}(\mathbf{6}), 18.4 \mathrm{~g}(0.137 \mathrm{~mol})$, in 100 mL of

[^3]methylene chloride and 52 g of propargyltriphenylphosphonium bromide (7) (0.136 mol) were mixed. The reaction mixture became a golden yellow solution and some precipitates appeared after heating under reflux for 2 h with stirring. The heating was terminated and the precipitates were removed by filtration. The filtrate was added to 300 mL of ethyl acetate; $42 \mathrm{~g}(60 \%)$ of a pale yellow solid was obtained. After reprecipitation of the solid from methylene chloride/ethyl acetate an analytical sample was obtained: mp $261-265{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (for 9 a) $\delta 2.33$ (s, 3 H , $\mathrm{H}_{3} \mathrm{CCNH}$), 2.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CCPh}$), 3.72 (d, $J_{\mathrm{PH}}=18.1,1 \mathrm{H}$, CHP $=$), $6.25-7.97$ ($\mathrm{m}, 20 \mathrm{H}, \mathrm{Ar}$), 11.1 (s, $1 \mathrm{H}, \mathrm{NH}$); For 9 b 2.31 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CC}=\mathrm{N}$), 2.74 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CCPh}$), 5.35 and $5.38\left(\mathrm{~d}, J_{\mathrm{PH}}\right.$ $=23.2,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P} \equiv$), 6.25-7.97 ($\mathrm{m}, 20 \mathrm{H}, \mathrm{Ar}$); ${ }^{13} \mathrm{C}$ NMR (for 9 a) $\delta 19.0\left(\mathrm{C}-1-\mathrm{CH}_{3}\right), 23.4\left(\mathrm{~d}, J_{\mathrm{CCP}}=15.5, \mathrm{C}-4-\mathrm{CH}_{3}\right), 58.2\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $113.3, \mathrm{C}-5), 119.8\left(\mathrm{~d}, J_{\mathrm{CP}}=89.2, \mathrm{P}-\mathrm{C}_{\mathrm{ipso}}\right), 137.6(\mathrm{C}-4), 162.5(\mathrm{C}-1) ;$ (for 9b) $17.3\left(\mathrm{C}-1-\mathrm{CH}_{3}\right), 19.48\left(\mathrm{~d}, J_{\mathrm{CCP}}=8.9, \mathrm{C}-4-\mathrm{CH}_{3}\right), 34.0(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=56.9, \mathrm{C}-5\right), 119.8\left(\mathrm{~d}, J_{\mathrm{CP}}=89.2, \mathrm{P}-\mathrm{C}_{\mathrm{ips}}\right), 137.5(\mathrm{C}-4), 157.1$ (C-1); ${ }^{31} \mathrm{P}$ NMR (for 9a) $\delta 16.8+17.8(73 \%)$; (for 9 b) $22.9+23.2$ (27%).

Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{Br} \mathrm{N}_{2} \mathrm{P}: \mathrm{C}, 67.58 ; \mathrm{H}, 5.48$. Found: C, 67.98; H, 5.80 .

Preparation of (2-((Diphenylmethylene)hydrazono)propylidene)triphenylphosphorane (10). Potassium hydroxide ($1 \mathrm{~g}, 18 \mathrm{mmol}$) was dissolved in 20 mL of ethanol. This solution was cooled to about $-15^{\circ} \mathrm{C}$ (ice/methanol) and then $4.6 \mathrm{~g}(8 \mathrm{mmol})$ of 8 was added with vigorous stirring. A yellow-orange precipitate was formed, and the mixture was allowed to stir at ambient temperature for ${ }^{1} / 2 \mathrm{~h}$. After the residue was filtered and reprecipitated from methylene chloride/heptane, $3.4 \mathrm{~g}(86 \%)$ of analytically pure fine yellow crystals were obtained. TLC showed one spot (petroleum ether/ethanol-6/4): $\mathrm{mp} 203-204{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.96\left(\mathrm{~d}, J_{\mathrm{PH}}=12.5,1 \mathrm{H}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{C} H\right), 2.44\left(\mathrm{~d}, J_{\mathrm{PH}}=1.7\right.$, $\left.3 \mathrm{H}, \mathrm{C}-4-\mathrm{CH}_{3}\right), 6.70-7.68(\mathrm{~m}, 25 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\delta 19.1$ (d, J_{CCP} $\left.=15.7, \mathrm{C}-4-\mathrm{Ch}_{3}\right), 44.5\left(\mathrm{~d}, J_{\mathrm{CP}}=112.2, \mathrm{C}-5\right), 138.6(\mathrm{C}-4), 172.5(\mathrm{C}-1)$; ${ }^{31} \mathrm{P}$ NMR δ 13.88. Precise mass was calcd for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{P} ; 496.207$; found, 496.208.

Preparation of (2-((Methylphenylmethylene)hydrazono) propylidene)triphenylphosphorane (11). Potassium hydroxide ($2.8 \mathrm{~g}, 50 \mathrm{mmol}$) was dissolved in 60 mL of ethanol; 10.4 g of $9(20 \mathrm{mmol})$ was allowed to react with the base solution as described in the preparation of $\mathbf{1 0}$. Fine yellow crystals, $\mathrm{mp} 208-210^{\circ} \mathrm{C}(6.0 \mathrm{~g}, 69 \%)$, were obtained. ${ }^{11}{ }^{31} \mathrm{P}$ NMR $\delta 13.03$ (44%), 13.70 (56%); precise mass calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{P}, 434.191$; found, 434.191.

Reaction of Ylide 10 with Diphenylketene. Preparation of 2-Methyl-4,9,9-triphenyl-4,9-dihydropyrazolo $[1,5-b]$ isoquinoline (16a). Method A. Diphenylketene was prepared in advance. ${ }^{12}$ Triethylamine ($1.3 \mathrm{~g}, 13 \mathrm{mmol}$) in 5 mL of ether was added dropwise with stirring, over a period of 0.5 h , to a cooled (ice bath) solution of diphenylacetyl chloride ($2.8 \mathrm{~g}, 12 \mathrm{mmol}$) in 25 mL of ether. The reaction mixture was allowed to stand overnight in a refrigerator. The mixture was filtered, and the filtrate was concentrated to dryness on a rotary evaporator. The residue was dissolved in 10 mL of benzene and added dropwise with stirring over a $20-\mathrm{min}$ period at room temperature to a mixture of ylide $10(3.5 \mathrm{~g}, 7 \mathrm{mmol})$ and benzene (60 mL). The reaction mixture became clear and red, was stirred at room temperature for 0.5 h , and then was heated under reflux for 4 h . After vacuum evaporation of the solvent, the residue showed three distinct spots by TLC: product 16a, triphenylphosphine oxide, and starting ylide 10. Chromatography with methylene chloride gave, after evaporation of the solvent, 3.0 g of crude 16 a . Recrystallization from 10 mL of ethanol/benzene (2/1) gave 2.3 g (85%) of analytically pure white crystals, mp $195.5-197^{\circ} \mathrm{C}$; precise mass calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2}, 412.194$; found, 412.193.

Method B: Diphenylketene prepared in situ. A solution of diphenyl acetyl chloride ($0.74 \mathrm{~g}, 3.2 \mathrm{mmol}$) in benzene (5 mL) was added dropwise with stirring at room temperature during 0.5 h to a slurry of ylide $10(1.25 \mathrm{~g}, 2.5 \mathrm{mmol})$ and triethylamine (0.41 $\mathrm{g}, 4.0 \mathrm{mmol}$) in 30 mL of dry benzene. The reaction and separation were accomplished as described in method A and yielded 0.89 $\mathrm{g}(86 \%)$ of pure 16 a .

[^4]Reaction of Ylide 11 with Diphenylketene. Preparation of 2,9-Dimethyl-4,9-diphenyl-4,9-dihydropyrazolo[1,5-b]isoquinoline (16h). Method B was employed using diphenylacetyl chloride ($0.74 \mathrm{~g}, 3.2 \mathrm{~m} \mathrm{~mol}$) in benzene (5 mL) added to ylide 11 ($1.1 \mathrm{~g}, 2.5 \mathrm{mmol}$) and triethylamine ($0.41 \mathrm{~g}, 4 . \mathrm{mmol}$) in benzene $(30 \mathrm{~mL})$. The pyrazoloisoquinoline ($0.81 \mathrm{~g}, 93 \%$ yield), one spot by TLC) was isolated as a mixture of stereoisomers, in a ratio of approximately $3 / 1$ by ${ }^{1} \mathrm{H}$ NMR. Precise mass, for a once-crystallized sample (from ethanol), calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2}, 350.178$; found, 350.177. Multiple recrystallizations from ethanol gave a pure samples of 16 h , the major stereoisomer, $\mathrm{mp} 128-129^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 6 h}$ ', the minor stereoisomer, were obtained by subtraction of the NMR of 16 h from the NMR spectra of the mixture of stereoisomers, precise mass (for 16 h) calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2}, 350.178$; found, 350.174 .
Reaction of Ylide 10 with Phenylketene. Preparation of trans- and cis-2-Methyl-4,9-diphenyl-4,9-dihydropyrazolo[$1,5-b$]isoquinoline ($18 \mathrm{~d}-1$ and 18d-2). Method B was employed using phenylacetyl chloride ($0.75 \mathrm{~g}, 4.9 \mathrm{mmol}$) in benzene (5 mL) and ylide $10(1.25 \mathrm{~g} 2.5 \mathrm{mmol})$ and triethylamine $(0.61 \mathrm{~g}, 6.0 \mathrm{mmol})$ in benzene (30 mL).
After removal of the solvent in vacuo, the crude reaction mixture was dissolved in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and chromatographed with petroleum ether/ethyl acetate ($7 / 3$). Eluates were collected and checked by TLC. The second fraction was a yellow solid mixture (by ${ }^{1} \mathrm{H}$ NMR) of $18 \mathrm{~d}-1$ and $18 \mathrm{~d}-2(0.55 \mathrm{~g}, 65 \%)$. This mixture was recrystallized from 3 mL of ethanol/benzene ($3 / 1$, v / v) to give the pure isomer 18d-1 as white crystals, mp 196-198 ${ }^{\circ} \mathrm{C}$. The X-ray data appear as supplementary material. Precise mass calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2}, 336.163$; found, 336.166.

Crystallographic Structural Determination of 18d-1. A colorless crystal of $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2}, \mathbf{1 8 d} \mathbf{- 1}$, measuring $0.20 \times 0.23 \times 0.30$ mm was found to belong to the noncentrosymmetric orthorhombic space group, Pna $2_{1}\left[\mathrm{No} 33,. C_{2 v}{ }^{9}\right]: a=17.754$ (5), $b=5.888$ (1), $c=17.416$ (5) $\AA, V=1820.4$ (5) $\AA^{3}, Z=4, \mu=0.63 \mathrm{~cm}^{-1}$ (Mo K α). The absence of a mirror plane or inversion center in the molecule and statistics based upon the distribution of E values suggested that the centrosymmetric alternative Pnam (nonstandard setting of Pnma [No. 62, $D_{2 h}{ }^{16}$]) was incorrect; the choice of the noncentrosymmetric space group was verified by the successful and reasonable structure ultimately obtained. A total of 2760 reflections was collected by a Nicolet R3 automated diffractometer; of this total, 2060 unique reflections at the $I \geq 2 \sigma(I)$ level were used for solution and refinement. The structure was solved by direct methods; the initial E map provided the locations of all nonhydrogen atoms. A difference Fourier map obtained after the anisotropic refinement of these atoms revealed the locations of all hydrogen atoms except for those of the methyl group. In the final blocked-cascade least-squares refinement cycles the positions of the located hydrogen atoms were refined isotropically, and those of the methyl-group hydrogen atoms were included (but not refined) in idealized positions ($(d(\mathrm{C}-\mathrm{H})=0.96 \AA)$. At convergence, $R_{F}=5.0 \%, R_{\mathrm{wF}}=5.2 \%$, and $\mathrm{GOF}=1.13$. A final difference map revealed only a diffuse background with a highest peak of 0.42 $e^{-} \AA^{3}$. Included in the final refinement cycles was a substantial correction for secondary extinction; low angle reflections displayed a systematically greater value for F (calc) vs. F (obsd). Additional information is available as supplementary material. The structure factor tables are available from one of the authors (A.L.R.) by direct correspondence.

The mother liquor from the above mentioned recrystallization was evaporated to half its original volume, and after standing overnight gave a second crop of crystals of 18d-1. The filtrate was treated with 2 mL of 95% ethanol and cooled to $0^{\circ} \mathrm{C}$. Pure white crystals of $18 \mathrm{~d}-2$ were obtained, $\mathrm{mp} 150-152^{\circ} \mathrm{C}$; precise mass calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2}, 336.163$; found, 336.163.

Transformation of (18d-2) into (18d-1). Compound 18d-2 (0.1 g) was dissolved in 5 mL of dry benzene and heated under reflux for 12 h . After removal of the solvent in vacuo, the ${ }^{1} \mathrm{H}$ NMR spectrum of the residue showed that both $18 \mathrm{~d}-2$ and $18 \mathrm{~d}-1$ were present in a ratio of $3 / 1$.

A similar treatment with compound $18 \mathrm{~d}-1$ showed no change.
Reaction of Ylide 10 with Methylphenylketene. Preparation of 2,4-Dimethyl-4,9-diphenyl-4,9-dihydropyrazolo-[1,5-b]isoquinoline (18b) and 2,4-Dimethyl-9,9-diphenyl-4,9-dihydropyrazolo[$1,5-b$]isoquinoline (16b). Ylide 10 (1.9
$\mathrm{g}, 3.7 \mathrm{mmol}$) was allowed to react for 24 h , via method B , with triethylamine ($0.76 \mathrm{~g}, 7.5 \mathrm{mmol}$) and α-phenylpropionyl chloride ($1.02 \mathrm{~g}, 6.1 \mathrm{mmol}$) in 50 mL of benzene. The chromatographed product gave two mixed fractions with a total of 1.31 g and a combined ratio of $\mathbf{1 6 b}$ to $\mathbf{1 8 b}$ of $6 / 4$. Pure white recrystalline $\mathbf{1 8 b}$ was obtained by recrystallization of the second fraction from ethanol, mp 179-181 ${ }^{\circ} \mathrm{C}$; precise mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2}, 350.178$; found, 350.175 .

Analytically pure 16b was obtained as light yellow crystals after two further chromatographic separations and crystallization of the original first fraction from heptane: $\mathrm{mp} 134-136^{\circ} \mathrm{C}$; precise mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2}, 350.178$; found, 350.177 .

Reaction of Ylide 11 with Methylphenylketene. Preparation of 2,4,9-Trimethyl-4-phenyl-4,9-dihydropyrazolo [1,5b]isoquinoline (18i) and 2,4,9-Trimethyl-9-phenyl-4,9-dihydropyrazolo[$1,5-b$]isoquinoline (16 i). Ylide 11 ($1.65 \mathrm{~g}, 3.8$ mmol) was allowed to react for 28 h , employing method B , with triethylamine ($0.76 \mathrm{~g}, 7.5 \mathrm{mmol}$) and α-phenylpropionyl chloride ($1.02 \mathrm{~g}, 6.1 \mathrm{mmol}$) in 50 mL of benzene. Column chromatography gave 0.21 g (19%) of 18 i pure (by TLC), as a pale yellow oil; a mixture of 16 i and its stereoisomer, $16 \mathrm{i}^{\prime}$, was also recovered pure, in a ratio of $1 / 3$, as a yellow oil. Attempts to crystallize $18 i$ or $16 i\left(16 i^{\prime}\right)$ from a wide variety of solvents were unsuccessful. Precise mass calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2}, 288.163$; found, 288.164 (for 18i) and 288.163 (for $16 \mathbf{i}$ and $16 \mathbf{i}^{\prime}$).

Reaction of Ylide 10 with Benzylketene. (a) Ylide 10 (2.5 $\mathrm{g}, 5 \mathrm{mmol}$) was allowed to react, by method B, with triethylamine ($0.76 \mathrm{~g}, 7.5 \mathrm{mmol}$) and β-phenylpropionyl chloride ($1.05 \mathrm{~g}, 6.3$ mmol) for 34 h . The reaction mixture was chromatographed with petroleum ether/ethyl acetate $(7 / 3)$. When elution of fraction (1) was completed, methanol was mixed into the above eluting solvent in a ratio increasing gradually from 5% to 10%, to collect fraction 2. The following data were obtained for the two fractions collected.
(1) 2-Methyl-4-benzyl-9-phenyl-4,9-dihydropyrazolo[1,5b jisoquinoline ($\mathbf{1 8 f}$). A light yellow solid ($0.38 \mathrm{~g}, 22 \%$) was obtained. Recrystallization from methanol gave an analytically pure sample, mp $174-176{ }^{\circ} \mathrm{C}$; precise mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{H}_{2}$, 350.178; found, 350.176.
(2) 4-Methyl-1,1,8-triphenyl-2,3-diazaocta-1,4-dien-6-yne (24f). Compound $24 \mathrm{f}(0.76 \mathrm{~g}, 43 \%$), was obtained, after recrystallization from methanol, an analytically pure sample was obtained: mp $167.5-169{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.89$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), $5.56(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.15-7.27(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}), 9.05$ (brs, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR $\delta 12.8\left(\mathrm{C}-4-\mathrm{CH}_{3}\right), 39.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 106.2$ (C-5), 140.4 (C-4), 145.7 (C-1); precise mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2}$, 350.178; found, 350.176 .
(b) When the reaction was carried out as described above, but with only 4 h of refluxing time, a mixture was obtained consisting of 18f, 24f, and 4 -methyl-1,1,8-triphenyl-2,3-diaza-1,3,5,6-octatetraene (13 f) in a ratio of approximately $4 / 3 / 3$ (by ${ }^{1} \mathrm{H}$ NMR). The total yield was recrystallized from methylene chloride/ heptane ($1 / 10$), affording an analytically pure sample as white crystals, mp 142-162 ${ }^{\circ} \mathrm{C}$; precise mass of the mixture calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2}, 350.178$; found, 350.182 ; ${ }^{1} \mathrm{H}$ NMR of 13 f (by subtraction of 18 f and 24 f) $\delta 1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.93\left(\mathrm{dq}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.05$ ($\mathrm{dd}, J=11.1,1 \mathrm{H},=\mathrm{CH}$), $5.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=$).

Attempted Thermal Reaction of 24f. Heating of 100 mg of 24 f in a pressure tube filled with dry nitrogen at $180^{\circ} \mathrm{C}$ for 3 h gave unchanged 24f.

Reaction of Ylide 10 with Ethylketene. Ylide 10 ($1.9 \mathrm{~g}, 3.8$ mmol) was allowed to react, by method B, with triethylamine (0.76 $\mathrm{g}, 7.5 \mathrm{mmol}$) and butyryl chloride ($0.48 \mathrm{~g}, 4.5 \mathrm{mmol}$). After heating the mixture under reflux for 24 h the solvent was evaporated in vacuo and the residue chromatography. Eluting with petroleum ether/ethyl acetate ($7 / 3$) afforded the first two fraction (a, b). Then elution with petroleum ether/ethyl acetate/methanol (11/4/1) gave the third fraction (c).
(a) 3-Butyryl-4-methyl-1,1-diphenyl-2,3-diazanona-1,4-dien-6-yne (25e) was obtained as an oil, 0.41 g (30% yield). On crystallization from methanol it gave an analytically pure sample, $\mathrm{mp} 92-93^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.00\left(\mathrm{t}, J=7.4,3 \mathrm{H}, \mathrm{C}-9-\mathrm{H}_{3}\right)^{13} 1.07(\mathrm{t}$, $\left.J=7.4,3 \mathrm{H}, \mathrm{C}-3^{\prime}-\mathrm{H}_{3}\right) 1.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}-2^{\prime}-\mathrm{H}_{2}\right), 2.37(\mathrm{~s}, 3 \mathrm{H}$,

$25 e$
$\left.\mathrm{C}-4-\mathrm{CH}_{3}\right), 2.59\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{C}-8-\mathrm{H}_{2}\right), 3.02\left(\mathrm{t}, J=7.4,2 \mathrm{H}, \mathrm{C}-1^{\prime}-\mathrm{H}_{2}\right)$, $5.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-5-\mathrm{H}), 7.04-7.36(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.8$ $\left(\mathrm{C}-4-\mathrm{CH}_{3}\right), 14.3\left(\mathrm{C}-3^{\prime}\right),{ }^{13} 14.5(\mathrm{C}-9), 18.0\left(\mathrm{C}-2^{\prime}\right), 26.9(\mathrm{C}-8), 37.2$ (C-1), 112.1 (C-5), 154.1 (C-1), $174.5 \mathrm{C}=0$); precise mass calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$, 358.204; found, 358.201 .
(b) 2 -Methyl-4-ethyl-9-phenyl-4,9-dihydropyrazolo $[1,5-$ b]isoquinoline (18 e) was recovered ($0.30 \mathrm{~g}, 27 \%$ yield) as a white solid. An analytically pure sample was obtained by recrystallization from heptane, $\mathrm{mp} 117-118{ }^{\circ} \mathrm{C}$; precise mass calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2}$, 288.163; found, 288.159.
(c) 4-Methyl-1,1-diphenyl-2,3-diazanona-1,4-dien-6-yne (24 e) was recovered as a white solid ($0.18 \mathrm{~g}, 16 \%$); after recrystallization from heptane an analytical sample was obtained, mp $129-131{ }^{\circ}{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.05\left(\mathrm{t}, \mathrm{J}=7.93 \mathrm{H}, \mathrm{C}-9-\mathrm{H}_{3}\right), 2.13(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{C}-4-\mathrm{CH}_{3}\right), 2.48\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{C}-8-\mathrm{H}_{2}\right), 5.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-5-\mathrm{H}), 7.04-7.34$ $(\mathrm{m}, 10 \mathrm{H}, \mathrm{ArH}), 9.71(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 12.8\left(\mathrm{C}-4-\mathrm{CH}_{3}\right)$, 14.4 (C-9), 27.3 (C-8), 105.5 (C-5), 142.8 (C-4), 145.6 (C-1); precise mass calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{H}_{2}$, 288.163; found, 288.161.

Butyrylation of 24e. Butyryl chloride ($22 \mathrm{mg}, 0.21 \mathrm{mmol}$) in 2 mL of dry acetonitrile was added dropwise over 15 min to a solution of 28 e ($58 \mathrm{mg}, 0.2 \mathrm{mmol}$) and triethylamine (21 mg , 0.21 mmol); stirring was continued at ambient temperature for 2 h . After evaporation of the solvent and chromatography of the residue (petroleum ether/ethyl acetate $8 / 2$), compound 25 e was obtained ($60 \mathrm{mg}, 85 \%$). The melting point and mixture melting point were identical with those of 25 e obtained in the previous experiment.

Reaction of Ylide 10 with Dimethylketene. Ylide 10 (1.9 $\mathrm{g}, 3.8 \mathrm{mmol}$), triethylamine ($0.57 \mathrm{~g}, 5.6 \mathrm{mmol}$), and isobutyryl chloride ($0.42 \mathrm{~g}, 4.0 \mathrm{mmol}$) were allowed to react by method B for 2 h . After removal of the solvent, the residue was chromatographed with petroleum ether/ethyl acetate ($7 / 3$) to afford fraction a and with petroleum ether/ethyl acetate/methanol (14/6/1) to afford fraction b.
(a) 1-(Diphenylmethyl)-3-methyl-5-isopropenylpyrazole (22) was isolated as a white solid ($0.15 \mathrm{~g}, 14 \%$). An analytically pure samples was obtained by recrystallization from methanol, mp $75-78{ }^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}$ NMR $\delta 2.03\left(\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{C}=\mathrm{CH}_{2}\right), 2.22(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{C}-3-\mathrm{CH}_{3}\right), 5.01\left(\mathrm{~d}, J=1.7,\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{C}=\mathrm{CH}_{2}\right.$-cis), $5.29(\mathrm{~d}, J=1.7$, $1 \mathrm{H},\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{C}=\mathrm{CH}_{2}$-trans), $5.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-4-\mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}$, CH $\left.(\mathrm{Ph})_{2}\right), 7.17-7.32(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.9\left(\mathrm{C}-3-\mathrm{CH}_{3}\right)$, $24.3\left(\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{C}=\mathrm{CH}_{2}\right), 64.9\left(\mathrm{~N}-\mathrm{CH}(\mathrm{Ph})_{2}\right), 104.3(\mathrm{C}-4), 117.4(=$ $\left.\mathrm{CH}_{2}\right), 135.1\left(\mathrm{H}_{3} \mathrm{CC}=\mathrm{CH}_{2}\right), 146.2(\mathrm{C}-5), 148.1(\mathrm{C}-3)$; precise mass calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2}$, 288.163; found, 288.160.
(b) (4,7-Dimethyl-1,1-diphenyl-6-hydroxy-2,3-diazaocta-1,3,5-trien-5-yl)triphenylphosphonium hydroxide inner salt $(\boldsymbol{Z}, \boldsymbol{E})(20)$ was isolated $(1.5 \mathrm{~g}, 72 \%)$ as a green-yellow solid. An analytically pure sample was obtained by recrystallization from methylene chloride/heptane ($1 / 10$), mp $160-162^{\circ} \mathrm{C}$. The pure Z or E isomers could not be isolated by TLC or column chromatography. ${ }^{31} \mathrm{P}$ NMR $\delta 9.58(34 \%), 16.37(66 \%)$. On the basis of previous work, ${ }^{14}$ it is assumed that the former peak is for the Z isomer the latter for the E isomer. ${ }^{1} \mathrm{H}$ NMR (presumed Z isomer) $\delta 1.01\left(\mathrm{~d}, J=6.9,6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CCH}_{3}\right)_{2}\right), 1.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=$ $\left.\mathrm{CCH}_{3}\right), 2.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.94-7.68(\mathrm{~m}, 25 \mathrm{H}, \mathrm{Ar}) ;{ }^{1} \mathrm{H}$ NMR (presumed E isomer) $\delta 0.93\left[\mathrm{~d}, J=6.5,6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.25$ (s, $\left.3 \mathrm{H}, \mathrm{N}=\mathrm{CCH}_{3}\right), 2.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.94-7.68(\mathrm{~m}, 25 \mathrm{H}$, Ar); ${ }^{13} \mathrm{C}$ NMR (presumed Z isomer) $\delta 19.7\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 28.5$ $\left(\mathrm{N}=\mathrm{C}-\mathrm{CH}_{3}\right), 34.4\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 139.1\left(\mathrm{~N}=\mathrm{C}-\mathrm{CH}_{3}\right), 160.1(\mathrm{C}=$ $\left.\mathrm{Ph}_{2}\right), 162.7\left(\mathrm{~d}, J_{\mathrm{CP}}=9.8,=C-\mathrm{P} \mathrm{Ph}_{3}\right), 193.4\left(=\mathrm{C}-\mathrm{O}^{\mathrm{e}}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ (presumed E isomer) $\delta 19.6\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 22.8\left(\mathrm{~N}=\mathrm{CH}_{3}\right), 34.8$ $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 138.7\left(\mathrm{~N}=\mathrm{C}-\mathrm{CH}_{3}\right), 159.2\left(=\mathrm{C}-\mathrm{Ph}_{2}\right), 162.7\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=9.8=\mathrm{C}^{-} \mathrm{P}^{+} \mathrm{Ph}_{3}$), $196.0\left(=\mathrm{C}-\mathrm{O}^{-}\right)$; precise mass calcd for $\mathrm{C}_{38^{-}}$ $\mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{OP}, 566.249$; found, 566.248.

The Thermal Rearrangement of 20. Compound $20(1.30 \mathrm{~g}$, 2.3 mmol) was sealed in a pressure tube filled with dry nitrogen and heated (a) for 3 h , and in a second experiment (b) for 1 h at $180^{\circ} \mathrm{C}$. The reaction mixtures were chromatographed and eluted with petroleum ether/ethyl acetate ($7 / 3$). Reaction gave $0.44 \mathrm{~g}(67 \%)$ of 22 ; reaction b gave $22(0.07 \mathrm{~g}, 11 \%)$, and also 0.43 $\mathrm{g}(65 \%)$ of 4,7-dimethyl-1,1-diphenyl-2,3-diazaocta-1,3-dien-5-yne (26) as a yellow oil. The analytical sample of 21 was obtained by short path distillation (bath temperature $170^{\circ} \mathrm{C}, 0.3 \mathrm{mmHg}$); it contained a trace of 22 , which could not be separated from 21. The analytical data for 21 (by subtraction of 22) are as follows, IR $2210 \mathrm{~cm}^{-1}$ (-C $\equiv \mathrm{C}-$); ${ }^{1} \mathrm{H}$ NMR $\delta 1.16$ (dd, $J=6.8,6 \mathrm{H}, \mathrm{CH}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{C}-\mathrm{CH}_{3}\right), 2.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $7.18-7.80(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}){ }^{13} \mathrm{C}$ NMR o $21.3\left(\mathrm{~N}=\mathrm{C}-\mathrm{CH}_{3}\right), 22.5$ $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.6\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 75.6(\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}), 107.7(\mathrm{C} \equiv \mathrm{C}-$ CH), $143.1\left(\mathrm{~N}=\mathrm{C}-\mathrm{CH}_{3}\right), 159.4\left(=\mathrm{C}-\mathrm{Ph}_{2}\right)$; precise mass calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2}, 288.163$; found, 288.161.

Reaction of Ylide 10 with Ketene. (a) Preparation of 2-Methyl-9-phenyl-4,9-dihydropyrazolo[1,5-b]isoquinoline (18c). Ketene was prepared according to the procedure of Williams and Hurd ${ }^{15}$ under a dry nitrogen atmosphere. The ketene stream was bubbled through the slurry of ylide 10 (1.25 $\mathrm{g}, 2.5 \mathrm{mmol}$) in 25 mL of benzene. After addition of ketene for 2 min with stirring, the reaction mixture became a clear red solution. The ketene stream was allowed to pass through the stirred solution for a further 2 min . The solution was stirred at ambient temperature for an additional 0.5 h , and under reflux for further 26 h . After removal of solvent in vacuo, the residue was chromatographed eluting with petroleum ether/ethyl acetate $(7 / 3)$. The first fraction was collected, and the solvent was evaporated in vacuo, affording $0.48 \mathrm{~g}(74 \%)$ of 18 c , a light yellow solid. An analytical sample was obtained by recrystallization from heptane, mp 114-115.5 ${ }^{\circ} \mathrm{C}$; precise mass calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2}$, 260.131; found, 260.131.
(b) Isolation of 1,1-Diphenyl-2,3-diaza-4-methyl-1,3,5,6heptatetraene (13c). The ketene stream ${ }^{15}$ was bubbled through the slurry of ylide $10(1.25 \mathrm{~g}, 2.5 \mathrm{mmol})$ in 25 mL of benzene at $0^{\circ} \mathrm{C}$ for 3 min and allowed to react at ambient temperature for 2 h . The solution was isolated as above, affording $0.55 \mathrm{~g}(85 \mathrm{~g})$ of 13c as a yellow oil; IR $1932 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}=\mathrm{C})$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.09$ (s, $3 \mathrm{H}, \mathrm{C}-4-\mathrm{CH}_{3}$), $5.09\left(\mathrm{~d}, J=6.7,2 \mathrm{H},=\mathrm{CH}_{2}\right), 6.00(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{CH}=$), $7.14-7.79(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.9\left(\mathrm{CH}_{3}\right), 79.3\left(\mathrm{CH}_{2}\right)$, $96.7(\mathrm{CH}), 158.2$ and 159.8 (C-1 and C-4 or reversed), 213.3 (=
(15) Williams, J. W.; Hurd, C. D. J. Org. Chem. 1940, 5, 122.
$\mathrm{C}=$); precise mass calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2}, 260.131$; found, 260.128.
Reaction of Ylide 11 with Ketene. Preparation of 1-(1-Phenylvinyl)-3,5-dimethylpyrazole (23). A slurry of ylide 11 ($2.2 \mathrm{~g}, 5 \mathrm{mmol}$) in 60 mL of benzene was allowed to react with ketene and then treated as described in the preparation of 18 c . The reaction afforded $0.75 \mathrm{~g}(76 \%)$ of 23 as a yellow oil; on short-path distillation (bath temperature $105^{\circ} \mathrm{C}, 0.05 \mathrm{mmHg}$) a colorless analytical sample of 23 was obtained: ${ }^{1} \mathrm{H}$ NMR $\delta 2.02$ (s, $3 \mathrm{H}, 5-\mathrm{CH}_{3}$), $2.27\left(\mathrm{~s}, 3 \mathrm{H}, 3-\mathrm{CH}_{3}\right.$), $5.36\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right.$), 5.69 $\left(\mathrm{s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.92(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 11.6\left(\mathrm{C}-5-\mathrm{CH}_{3}\right)$, $12.1\left(\mathrm{C}-3-\mathrm{CH}_{3}\right), 106.1(\mathrm{C}-4), 111.6\left(\mathrm{C}=\mathrm{CH}_{2}\right), 136.6\left(\mathrm{C}=\mathrm{CH}_{2}\right), 145.2$ (C-5), 148.7 (C-3); precise mass calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}, 198.116$; found, 198.115.

Acknowledgment. This work was supported in part by a generous grant (GM27620) from the National Institute of General Medical Science. We also thank Dr. Roger Crecely of the University of Delaware for obtaining and discussing with us the ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$, and ${ }^{13} \mathrm{C}$ NMR spectra reported in this work. Purchase of the Brucker WM250 was supported in part by a grant (GM27616) from the National Institutes of Health. The acquisition of the Nicolet R3-X-ray crystallographic system was supported in part by a grant (CHE-82-05 589) from the National Science Foundation.
Registry No. 5, 5350-57-2; 6, 13466-30-3; 7, 2091-46-5; 8a, 87101-38-0; 8b, 87101-39-1; 9a, 87101-40-4; 9b, 87101-41-5; 10, 87101-42-6; 11, 87101-43-7; 13c, 87101-45-9; 16a, 87101-46-0; 16b, 87101-47-1; cis-16h, 87101-48-2; trans-16h, 87101-49-3; cis-16i, 87101-50-6; trans-16i, 87101-51-7; 18b, 87101-52-8; 18c, 87114-17-8; cis-18d, 87101-53-9; trans-18d, 87101-54-0; 18e, 87101-55-1; 18f, 87101-56-2; 18i, 87101-57-3; (E)-20, 87101-58-4; (Z)-20, 87101-59-5; 21, 87101-60-8; 22, 87101-61-9; 23, 87101-62-0; 24e, 87101-63-1; 24f, 87101-64-2; 25e, 87101-65-3; diphenylketene, 525-06-4; methylphenylketene, 3156-07-8; ketene, 463-51-4; phenylketene, 3496-32-0; ethylketene, 20334-52-5; benzylketene, 87101-44-8.

Supplementary Material Available: Supplementary Material Available: Tables of the experimental data for the crystallographic structural determination (10 pages). Table 1S, atomic coordinates; Table 2S, bond distances; Table 3S, bond angles; Table 4 S , anisotropic temperature factors; Table 5S, hydrogen atom coordinates; and Table 6S, calculated vs. observed structure factors. Ordering information is given on any current masthead page.

Palladium-Catalyzed Cyclizations of Bromodialkenyl Ethers and Amines

L. Shi, C. K. Narula, K. T. Mak, L. Kao, Y. Xu, and R. F. Heck*
Department of Chemistry and the Center for Catalytic Science and Technology, University of Delaware, Newark, Delaware 19711

Received April 26, 1983
A variety of vinylic bromoalkenyl alkenyl ethers were reacted with piperidine and a palladium acetate-tri-o-tolylphosphine catalyst. Intramolecular vinylic substitution occurred in many cases. Five-membered rings formed most easily, followed by six and then seven. Larger rings were much more difficult to produce. Substitution at the reacting double bond sometimes altered the ring closure preference since the less substituted double bond carbons are more reactive. Bromoalkenyl 2,4-hexadienyl ethers, bromoalkenyl 4-hydroxy-2-butenyl ethers, and bromodialkenylamines behaved similarly to the above ethers, showing a preference for formation of five-membered ring products over six and a very low tendency to form medium-sized rings. The reactions are of preparative value for forming various substituted five-, six-, and seven-membered ring oxygen and nitrogen heterocycles.

We have shown in previous work that various bromodienes can be cyclized with palladium catalysts and piperidine to produce cycloalkene derivatives. ${ }^{1}$ The reaction proved to be most useful for the formation of five-membered rings. A typical example is the cyclization of 2 -bromo- 1,6 -heptadiene. The reaction is believed to proceed

[^5]by way of a π-allylic palladium intermediate which is attacked by the piperidine.
Related palladium-catalyzed cyclizations of haloaromatic amides have been reported, also. For example, N-acryo-yl-o-bromoanilines cyclize to oxindole derivatives. ${ }^{2-4}$ We

[^6]
[^0]: ${ }^{\dagger}$ For X-ray structure.

[^1]: (3) Schweizer, E. E.; DeVoe-Goff, S.; Murray, W. P. J. Org. Chem. 1977, 42, 200.

[^2]: (4) (a) Ferrier, W. G.; Iball, J. Chem. Ind. (London) 1954, 1296. (b) Rabideao, P. W. Acc. Chem. Res. 1978, 11, 141. (c) Dalling, D. K.; Zilm, K. W.; Grant, D. M.; Heeschen, W. E.; Horton, W. J.; Pugmire, R. J. J. Am. Chem. Soc. 1981 103, 4817-4824.
 (5) (a) Birch, A. J.; Hinde, A. L.; Radom, L. J. Am. Chem. Soc. 1981, 103, 284-289. (b) Lipkowitz, K. B.; Rabideau, P. W.; Raber, D. J.; Hardee, L. E.; Schleyer, P. V. R.; Kos, A. S.; Kahn, R. A. J. Org. Chem. 1982 47, 1002.
 (6) Gough, S. T. D.; Trippett, S. Proc. Chem. Soc. London 1961302. Markl, G. Chem. Ber. 1961, 94, 3005. Bestmann, H. J.; Geismann, C. Justus Liebigs Ann. Chem. 1977, 282. Bestmann, H. J.; Kumar, K.; Schaper, W. Angew. Chem., Int. Ed. Engl. 1983, 22, 167.

[^3]: (7) Eiter, K.; Oediger, H. Justus Liebigs Ann. Chem. 1965 682, 62.
 (8) Vogel, A. I. "Practical Organic Chemistry", Longmans, Green and Co.: New York, 1948; p 364.
 (9) Smith, L. I.; Howard, K. L. "Organic Syntheses"; Wiley: New York, 1944; Collect. Vol. No. 24, p 53.
 (10) Lock, G.; Stach, K. Chem. Ber. 1944 77B 293.

[^4]: (11) The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR are rather too complex to be interpreted because of the presence of three isomers (by ${ }^{31} \mathrm{P}$ NMR).
 (12) Taylor, E. C.; McKillop, A.; Hawks, G. H. "Organic Synthesis"; Wiley: New York, 1972; Collect. Vol. No. 52, p 36.

[^5]: (1) Narula, C. K.; Mak, K. T.; Heck, R. F. J. Org. Chem. 1983, 48, 2792.

[^6]: (2) Terpko, M. O.; Heck R. F. J. Am. Chem. Soc. 1979, 101, 5281
 (3) Mori M.; Ban, Y. Tetrahedron Lett. 1979, 1133.

